Hamiltonian Structure for Dispersive and Dissipative Dynamical Systems

نویسندگان

  • Alexander Figotin
  • Jeffrey H. Schenker
چکیده

We develop a Hamiltonian theory of a time dispersive and dissipative inhomogeneous medium, as described by a linear response equation respecting causality and power dissipation. The proposed Hamiltonian couples the given system to auxiliary fields, in the universal form of a so-called canonical heat bath. After integrating out the heat bath the original dissipative evolution is exactly reproduced. Furthermore, we show that the dynamics associated to a minimal Hamiltonian are essentially unique, up to a natural class of isomorphisms. Using this formalism, we obtain closed form expressions for the energy density, energy flux, momentum density, and stress tensor involving the auxiliary fields, from which we derive an approximate, “Brillouin-type,” formula for the time averaged energy density and stress tensor associated to an almost mono-chromatic wave.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 60 80 03 v 1 1 A ug 2 00 6 HAMILTONIAN STRUCTURE FOR DISPERSIVE AND DISSIPATIVE DYNAMICAL SYSTEMS

We develop a Hamiltonian theory of a time dispersive and dissipative inhomogeneous medium, as described by a linear response equation respecting causality and power dissipation. The Hamiltonian constructed here couples a given system to auxiliary fields in the universal form of a so-called canonical heat bath. After integrating out the heat bath, the original dissipative evolution is exactly re...

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

Hamiltonian treatment of time dispersive and dissipative media within the linear response theory

We develop a Hamiltonian theory for a time dispersive and dissipative (TDD) inhomogeneous medium, as described by a linear response equation respecting causality and power dissipation. The canonical Hamiltonian constructed here exactly reproduces the original dissipative evolution after integrating out auxiliary fields. In particular, for a dielectric medium we obtain a simple formula for the H...

متن کامل

Stationary states of dissipative quantum systems

In this Letter we consider stationary states of dissipative quantum systems. We discuss stationary states of dissipative quantum systems, which coincide with stationary states of Hamiltonian quantum systems. Dissipative quantum systems with pure stationary states of linear harmonic oscillator are suggested. We discuss bifurcations of stationary states for dissipative quantum systems which are q...

متن کامل

Dissipative Perturbations of 3d Hamiltonian Systems

In this article we present some results concerning natural dissipative perturbations of 3d Hamiltonian systems. Given a Hamiltonian system ẋ = PdH, and a Casimir function S, we construct a symmetric covariant tensor g, so that the modified (so-called “metriplectic”) system ẋ = PdH + gdS satisfies the following conditions: dH is a null vector for g, and dS(gdS) ≤ 0. Along solutions to a dynamica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007